Microwave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts
Authors
Abstract:
In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed existence of Al-O band and bio-functional groups, originated from plant extract. Morphology and size of nanoparticles were investigated using scanning electron microscopy, transmission electron microscopy and atomic force microscopy techniques. It was observed that nanoparticles have near-spherical shape. Average size of clusters of nanoparticles varied with different routes from of 60 nm to 300 nm. AFM images showed that Individual nanoparticles were less than 10 nm.
similar resources
microwave-assisted synthesis of alumina nanoparticles using some plants extracts
in present study we studied using green routes for microwave assisted synthesis of alumina nanoparticles from aluminum nitrate. it was revealed that when plant extracts are used, no specific stabilizer is needed. structural characterization of nanoparticles was studied using x-ray diffraction that showed semi-crystalline structure for two of plant extracts, other xrd patterns had no significant...
full textMicrowave-assisted synthesis of molybdenum oxide nanoparticles
This paper focused on a simple approach for synthesis of molybdenum oxide (MoO3) nanoparticles and reports a facile route for synthesis of such nanoparticles, using microwave irradiation as a homogenous and powerful source of heating, using ethylene glycol as the solvent and heating medium. For more investigations, besides microwave heating, the obtained solutions were also treated by conventio...
full textdetection of volatile compounds of medicinal plants with some nano-sorbents using modified or new methodologies and investigation of antioxidant activity of their methanolic extracts
in this work, a novel and fast method for direct analysis of volatile compounds (davc) of medicinal plants has been developed by holding a filament from different parts of a plant in the gc injection port. the extraction and analysis of volatile components of a small amount of plant were carried out in one-step without any sample preparation. after optimization of temperature, extraction time a...
Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles
Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...
full textmicrowave-assisted synthesis of molybdenum oxide nanoparticles
this paper focused on a simple approach for synthesis of molybdenum oxide (moo3) nanoparticles and reports a facile route for synthesis of such nanoparticles, using microwave irradiation as a homogenous and powerful source of heating, using ethylene glycol as the solvent and heating medium. for more investigations, besides microwave heating, the obtained solutions were also treated by conventio...
full textMicrowave Assisted Synthesis of Some Quinoxaline Derivatives
The high commercial demand for quinoxalines needs a rapid, greener and safer synthetic method among the chemists. A series of quinoxaline derivatives has been synthesized by condensation of diamines and dicarboniles in microwave heating conditions and in solvent free media. This environmentally benign synthetic approach gives us excellent yields (80-90%) in shorter reaction time (3.5 minutes.)....
full textMy Resources
Journal title
volume 7 issue 1
pages 40- 46
publication date 2017-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023